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Abstract. This paper extends limiting results obtained for the sampling interval at zero and 
infinity when various sampling patterns other than the conventional rectangular grid are 
used. 

1. Introduction 

This paper is concerned with methods of representing real surfaces in digital form. The 
transition from analogue data obtained from surface measuring instruments to digital 
form is necessary to allow a wide degree of flexibility in estimating parameters. In 
this paper the surfaces of interest are those taken from machined parts. From such 
surfaces information can be obtained which is fundamental to the functional properties 
of components, especially those functions concerned with contact such as friction, wear 
and lubrication. In these contact situations the properties of the surface summits are 
critical. Typical properties of interest include the density of summits, their expected 
heights, curvatures and slopes. 

Conventional digital representations of surfaces consist largely of individual one- 
dimensional ( I D )  profiles of the surface. In this case simple three-point analysis for peak 
definition is used; a peak exists if the two contiguous digital ordinates are lower than 
the central one. Further refinement can be achieved using more points but they are still 
in a straight line. A much more realistic representation of the surface is to use digital 
points on a two-dimensional (2D) plane. However, moving into the 2D plane brings 
with it a new degree of complexity; there are many different possibilities for defining 
a summit (2D peak). The cases for four and five points have already been studied 
by Whitehouse and Phillips (1985) but there are others such as the hexagonal case 
investigated here. Obviously more refinement of ordinary parameters such as curvature 
or slope can be catered for by using Lagrangian 2D differentiation (see Abramowitz 
and Stegun 1965) , but these only allow for rectangular grids and do not take into 
account many different definitions of summits. 

Obviously there is a natural inclination to use more and more digital points in the 
modelling in order to get results which are closer to the theoretical continuous results. 
But a price has to be paid for these more comprehensive models. The penalty is usually 
in the form of data storage or processing time. It is the purpose of this paper to see if 
there are any advantages of using the hexagonal sampling scheme and the seven-point 
( k  = 6) model for a summit as opposed to such other schemes as the digonal, the 
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Figure 1. Different sampling schemes. ( a )  Three-point scheme (digonal) for k = 2. ( b )  Four- 
point scheme (trigonal) for k = 3 showing alternate start points and alternative sampling 
direction at 30". (c )  Five-point scheme (tetragonal) for k = 4. ( d )  Seven-point scheme 
(hexagonal) for k = 5 showing alternate start points and alternative sampling direction at 
60". 

trigonal and in particular the rectangular (tetragonal) five-point (k = 4) model (see 
figure 1 ) .  

I t  has been pointed out by Preston (1979) that there is a reluctance in using 
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anything other than a rectangular sampling scheme because it is perceptually more 
satisfactory for humans to observe straight vertical features on a square grid pattern. 
He also pointed out that robots would not have this same bias. 

The obvious reasons, apart from those given above, for using the rectangular grid 
is that the transformation from I D  to ZD is more natural. A usual example pointed 
out is that of the fast Fourier transform (FFT).  I t  is very simple to progress from a I D  
FFT to a 2D FFT simply by taking all the rows in turn and then the columns. What is 
not so obvious, however, are the results obtained by Mersereau (1979), in robot vision 
applications, who showed that by using a hexagonal sampling scheme the 2D FFT 
required less computational time than when a rectangular grid was used, especially if 
the Z D  image had circular symmetry. Similar advances occurred in filtering. Also it was 
found that 13.4% of data points were needed to cover an image yet preserving the same 
bandwidth. I t  is also true to say that hexagonal sampling is more symmetrical. Only 
three correlation coefficients are required between ordinates in the k = 6 case whereas 
in the rectangular case the number can be up to six different coefficients depending on 
the numerical model. 

On the debit side it has to be admitted that hexagonal sampling schemes are more 
difficult to incorporate into TV scan systems because of the need to delay alternate 
scan lines by one half a sample interval and also that if a regular hexagonal geometry 
is required the sample interval has to be increased by a factor of 2 / & .  These combine 
to make programming and testing more difficult. 

At present hexagonal sampling has been used principally in TV image processing 
particularly for robot vision. In this application, what are often being examined 
are edges and curves. There is considerable evidence (see Staunton 1989) that much 
improvement in processing speed can be obtained with little change to TV frame grab 
routines. Nearly 50% speed-up has already been achieved. 

Unfortunately considerations applicable to flow and edge detection in vision systems 
are not necessarily useful in surface metrology although the technique has been used in 
detecting flows in sand moulds. In surface metrology for tribology i t  is the specific height 
(or intensity) information which is being sought, and its distribution. This is prone to 
much greater errors especially in the measurement of differentials to get curvature and 
slope as opposed to differentiating to enhance edges as in vision applications. 

I t  is the purpose of this paper to bring together all the results suited for tribology 
obtained so far including all the existing knowledge as well as new information on the 
hexagonal sampling method. From this collation i t  is intended to make judgements on 
the complexity of model needed to achieve a result to within a known percentage of 
the theoretical continuous results. 

2. Sampling schemes 

A number of sampling schemes for sampling in a 2D plane were discussed by White- 
house and Phillips (1985). These can best be visualised in figure 1 by means of a 
circle whose centre is an ordinate, and around the circumference of which are k evenly 
spaced ordinates. with angular spacing 2 n / k .  Whitehouse and Phillips (1985) discussed 
the cases of k = 2 (for profile sampling) and k = 3 and 4 (for 2D plane sampling). The 
next step is to introduce the seven-point (hexagonal) case of k = 6, which has six evenly 
spaced ordinates around the circumference with angular spacing n/3.  To produce an 
appropriate grid i t  would be necessary to sample along parallel lines in a manner 
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similar to that which produced the grid for the four-point (trigonal) case of k = 3. The 
radius of the circle is assumed to be h’ = Ah, i.e. this is the distance between the central 
ordinate and the surrounding ordinates. I f  the same unit of measurement were used 
for all schemes (values of k) then this would lead to different densities of ordinates 
(see table 1 of Whitehouse and Phillips 1985). However, to make comparisons between 
schemes more appropriate (and related to the information used) A is chosen for each 
scheme (value of k )  to ensure that the density of ordinates is unity when h is unity. 
So A = 2/(27l’,) if k = 3, A = 1 if k = 4 and A = 2’!2/(3‘/4) if k = 6. These schemes 
are used to measure peaks of the profile and summits of the surface. This is done by 
defining ‘discrete’ peaks and summits whenever a central ordinate Z, is higher (larger 
in magnitude) than the surrounding k ordinates. 

3. Limiting results 

Results for the distribution of the peak and summit height have been obtained by Rice 
(1945) and Nayak (1971) for the continuous Gaussian surface with zero mean and unit 
variance. Whitehouse and Phillips (1  985) compared these results with those obtained 
with ‘discrete’ definitions using the discrete sampling schemes discussed in 9 3, for k = 2, 
3 and 4, as the sampling interval h’ = Ah converges to 0. These results will now be 
supplemented by the result for k = 6. To do this it is necessary to make assumptions 
about the behaviour near the origin of the autocorrelation function p ( t )  for ordinates 
a distance t apart. It  will be assumed that 

p ( t )  = 1 + D, t2/2! + D, t4/4! + o( t4 )  (3.1) 

where D, < 0, D, > 0 and 

(3.2) 

Whitehouse and Phillips (1985) considered the density of peaks and summits. The 
results for isotropic continuous Gaussian surfaces are known and were given for peaks 
as 

by Rice (1945) and for summits as 

by Nayak (1971). 
The density of peaks or summits is the number of peaks per unit length or summits 

per unit area, using the ( k  + 1)-point definition of peak for k = 2 and of summit for 
k = 3, 4 and 6. The expected density of peaks or summits is the product of the pr(Tk+l) 
and the density of ordinates l /h2 ,  where T,,, is the event (S, > 0, S,  > 0,. . . , S,  > 0) 
and S ,  to S,  are the differences between the central ordinate and the k adjacent 
ordinates at a distance h’. This probability pr(Tk+l) is known as an orthant probability. 

The limiting behaviours of the orthant probabilities pr(Tk+l) as h tends to 0 are 
given in table 1, for k = 2, 3, 4 and 6. The results for k = 2, 3 and 4 are taken from 
Whitehouse and Phillips (1985) though they have been adjusted for k = 3 to make the 
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Table 1. Expected summit (peak)  densit). 

5057 

prlTA+I) 
Model !i limit as It 0 

Expected density 

limit as h -+ 0 limit as h 4 x 

points 
I 0.333 - _ -  - 

3h h 

= 0.400 2 / I -  = 1.306Ds,,, 
(-'D:) - 

1 0.143 _ -  -~ 
&[n + 6(  - I ) ]  

7h2 h2  sum Seven 6 
points 4n 

= l.O3XD,,, 

density of ordinates l,/h'. In all cases the limit as h tends to zero is zero. However, the 
rate of convergence to zero is the important factor. I t  is seen that for the I D  profile 
( k  = 2 )  the limit behaves as 

and for the 2D plane ( k  = 3. 4 and 6) the limit behaves as 

C,[D,l(-D,)] h2 (3.6) 

for suitable constants C,. In this paper the new result for the case when k = 6 is 
given. The problem in obtaining this is that there are no general formulae for orthant 
probabilities for k > 3, except in special cases. To obtain C, the second derivative 
of the orthant probability is needed. This can be obtained by using the differential 
reduction formula of Plackett (1954) as the differential reduces the dimension of the 
orthant probability by two. When this method was applied two orthant probabilities 
of dimension two and four were obtained which could be evaluated. The mathematical 
details are given in the appendix. 

The expected density of 'discrete' summits is the product of the orthant probability 
and l / h 2 .  Hence in the limits as h tends to 0 this expectation is half the second 
derivative of the orthant probability. These are also given in table 1.  For profiles 
( k  = 2 )  the expected density of peaks converges to the continuous result. Dpeak, given 
by Rice (1945). For the 2D plane ( k  = 3. 4 and 6) the expected densitj of 'discrete' 
summits does not converge to the continuous results, D,,,, given by Nayak (1971). In 
all cases the limit is greater than D,,,, by 73% for k = 3, by 31% for k = 4 and by 
4% for k = 6. 

In this case the 
autocorrelation function becomes zero and as the joint distribution of the ordinates is 
Gaussian the ordinates are independent. So the orthant probability is the probability 

The limits as h tends to infinity are also given in table 1 .  
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that the central ordinate is greater than the k surrounding ordinates. It is well known 
that this probability is l / ( k  + I ) ,  a result given by David and Six (1971). Hence the 
expected density of a peak behaves as 1/3h  for k = 2 and the expected density of a 
summit behaves as I / [ (k  + l )h2 ]  for k = 3, 4 and 6. 

The expected peak or summit height of a surface with ordinates Z was also 
considered by Whitehouse and Phillips (1985). The results are known for isotropic 
continuous Gaussian surfaces and were given for peaks as 

E(Z I continuous peak) = J71/2 q (3.7) 

by Rice (1945) and for summits as 

E ( Z  1 continuous summit) = (4/J;;) q (3.8) 

by Nayak (1971). So the expected summit height for a 2D plane is 80% higher than 
the expected peak height on a profile. 

Table 2. Expected summit (peak) height E ( Z o  I TL- I ) .  

Expected summit (peak) height 

Model k limit as h -+ 0 limit as h -+ m 

0.846 4 I 2  
Three points 2 ( 4 )  q =0.555-q fi 

4 
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fi 

1 '2 
q = 1.688 (:) q 

Five points 4 8v'% 
n + 2 sin-'(:) + 4& 

4 
= 0.938 -q 

d x  

1.029 

1.163 

3&[6rr - 12 tan-'(l/&) - a n ]  112 
Seven points 6 q = 1.779 (4) q 12-52 

J;;[n + 6 t J 3  - I ) ]  

4 
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fi 

The limiting behaviours of the expected heights as h tends to 0 are given in table 
2 for k = 2, 3, 4 and 6. The results for 2, 3 and 4 are taken from Whitehouse and 
Phillips (1985). In this paper the new result for k = 6 is given. The expected peak or 
summit height was given in the appendix of Whitehouse and Phillips (1982) for the 
general case of discrete measurements for the ( k  + 1)-ordinate case with a radius h. 
For k = 6 this involves the ratio of two orthant probabilities of degree 5 in the the 
numerator and the orthant probability pr(Tk+,) of degree 6 in the denominator. Now 
the behaviour of pr(Tk+,) is known from table 1 so it  is only necessary to ascertain 
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the behaviour of the orthant probability in the numerator. I t  can be shown that the 
numerator behaves in the limit as 

(3.9) 

for a suitable constant C;. The value of CA has been evaluated and the details are 
given in the appendix. 

Using this result it is seen in table 2 that the limiting value of the expected summit 
height as h tends to 0 for k = 6 is 0.988(4~/&), i.e. almost 99% of the value of the 
expected height of the continuous surface given by Nayak (1971) in (3.8). So for profiles 
the expected height converges to the continuous result, E(Z  1 continuous peak), given 
by Rice (1945). For the 2D plane ( k  = 3, 4 and 6) the expected summit height does not 
converge to the continuous result, E ( Z  1 continuous summit), given by Nayak (1971). 
In all cases the limit is smaller being 87% for k = 3, 94% for k = 4 and nearly 99% 
for k = 6. 

The limits as h tends to infinity are also given in table 2. From the remarks above 
for these limits in table 1 it is seen that the expectations are the expected value of the 
largest ordinate in an independent sample of ( k  + 1) Gaussian ordinates. These have 
been widely tabulated and the values that are given in table 2 can be found in David 
(1981, p 61). 

4. Discussion 

Results have been obtained for summit properties using different sampling schemes and 
their associated numerical models. It has been possible to extend the limiting results 
obtained by Whitehouse and Phillips (1985) to the seven-point (hexagonal) sampling 
case, for k = 6. This has been done by using the general methods given by Whitehouse 
and Phillips (1982) and Phillips (1984). The limiting results are obtained by using 
the reduction formula of Plackett (1954) which reduces the dimension of the orthant 
probabilities by 2. This reduction from six dimensions. for which there are no general 
formulae, to four dimensions enables the limiting behaviour of the orthant probabilities 
to be evaluated. The tedious details were checked with the computer algebra package 

The object of the exercise was to determine the degree of complexity needed to 
approach the theoretical continuous results to within a satisfactory limit. This limit has 
been chosen to be ?5%. Figure 2 shows how the expected summit density and summit 
height compare with change in the numerical model. I t  is straightforward to obtain the 
expected summit curvatures from the formulae for expected summit heights given in 
Whitehouse and Phillips (1982, 1985). These three parameters are the most important 
ones in influencing surface properties. 

As can be seen from figure 2 it is only when k = 6 (the hexagonal case) that the 
digital result for the expected summit density is within 5% of the continuous limit. So 
the hexagonal pattern is clearly needed in this case. However the situation as h tends 
to 0 for different models shows that the situation is far from clear for the expected 
summit height because even for k = 4 the result is very close to the 5% acceptable 
limit. 

Another point to notice is the way in which the limiting results converge. When 
k = 8 the limiting results should equal the theoretical continuous results as h tends 

REDUCE. 
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Figure 3. The probability of an ordinate being a 
summit as a function of k .  

to 0 though this has still to be verified. I t  could be argued that the results should be 
extended to this case but the indications are that this is not practically necessary. In 
both cases the rate of change is much less dramatic as k gets large so that a law of 
diminishing returns is possible. 

For the limiting case as h tends to infinity the probability that an ordinate is a 
summit is l / ( k  + 1 )  for model k and is shown in figure 3 as a function of k . As k tends 
to infinity this probability approaches zero. 

The model results described in this paper for the new value of k = 6, the hexagonal 
model, represents a step forward in the digital representation of surfaces. Having this 
extra model has enabled the importance of digital models to be more fully appreciated 
apart from providing a more comprehensive coverage of the surface than was previously 
possible with just k = 2, 3 and 4. It is therefore a more robust digital procedure. 

However. there are issues still to be resolved in the hexagonal case. I t  has been 
shown by Sharp (1961) that one advantage is that the data storage is 1396 less than for 
the conventional rectangular case and that in many instances the processing is quicker. 
But these advantages are often apparent when the bandwidth of the signal has circular 
symmetry. Also because of this the processing speed-up favours edge enhancement 
and boundary tracking. Whether this benefit is maintained in the case of identifying 
summit properties remains still to be seen. Furthermore, surfaces which have centro- 
symmetrical bandwidth limitation are restricted to those which are isotropic. Such 
surfaces may be produced by shot blasting, electro discharge machining and some of 
the more modern processes such as ion-beam milling. Other processes like grinding 
and polishing are much more likely to have box-type bandwidth limitations which are 
more amenable to rectangular scanning schemes described by the model with k = 4. 

There has been no comparison of the various sampling methods to a known surface. 
Prospective users of these methods need a measure of the advantages to be gained 
in accuracy of prediction of surface quality versus processing time for the different 
sampling schemes. Future work in this area, therefore, will be to perhaps examine 
other summit parameters and to examine the storage and processing times for surfaces 
having isotropic bandwidth limitations and which are anisotropic. 

Appendix 

Results for the probability density function and expectation of a ‘discrete’ peak (or 
summit) height can be obtained from the general results of truncated random variables 
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given by Phillips (1984) and in the appendix of Whitehouse and Phillips (1982), and in 
particular for the peak height case by Whitehouse and Phillips (1978). 

Define the m-dimensional orthant probability 

@"'(O; V) = Jl . . . s-1 41mJ(x'; V) dx,  . . . dx,, 

where 4Im1(x'; V) is the probability density function of a multivariate normal distribution 
for a random variable vector X of length m with zero means and variance-covariance 
matrix V. 

When k = 6 the probability that a central ordinate is a summit is given by the 
orthant probability 

pr(T,) = o ' ~ ' ( o ; v ~ )  

with 

v, = 

where 

and 

A 21 2 1 3 ~  4. 647) 

Using the reduction formula of Plackett (1954) the first derivative is given by 

d 
-a+6'(o:v6) dh = ~ ( h )  O'~ ' (O;V? ' )  + c(h) d4'(0;vyJ). (A81 

I t  is possible to show that 

lim o'"(o; vi") = $ 

and 
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as h tends to 0 .  However, 

To find out how this last orthant probability behaves as h tends to 0 we differentiate 
again. This leads to three orthant probabilities of dimension two, whose limits as h 
tends to 0 are 0.5, 0 and 0.5. Hence 

as h tends to 0. Putting all these results together gives 

as h tends to 0. 
The expected summit height (for k = 6) is given by 

where 6, is the variance-covariance matrix of the conditional distribution of the 
differences SI.. . . , S, given S,. - O ( h ' )  as h tends to 0 and from (3.1) that 
d- - O ( h )  as h tends to 0 so i t  is necessary to show that @(O;B6) - O(h)  as h 
tends to 0. This can be done by finding the derivative. 

Now we have shown that pr(T,) 

The matrix 6, has the form 

where B , ,  ..., E ,  are functions of b and c, and hence of h. I t  is therefore necessary to 
use the reduction formula of Plackett (1954) six times with B ,  ,...,E6. The reduction 
formula produces orthant probabilities of dimension three which can be evaluated by 
the well known formula given by David (1953). When these are combined they give 

Hence the result in table 2 for the limiting case as h tends to 0. 
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